Brighter Booster / Proton Driver Project

- Recognized that proton booster is a critical component for Fermilab
 - May be "the" key component for a high intensity program
- 2-year "real" machine study just completed
 - Shows that 16 GeV rapid-cycling design feasible
 - Designed to make minimal impact on on-going program
 - Initial cost estimate

Next step:

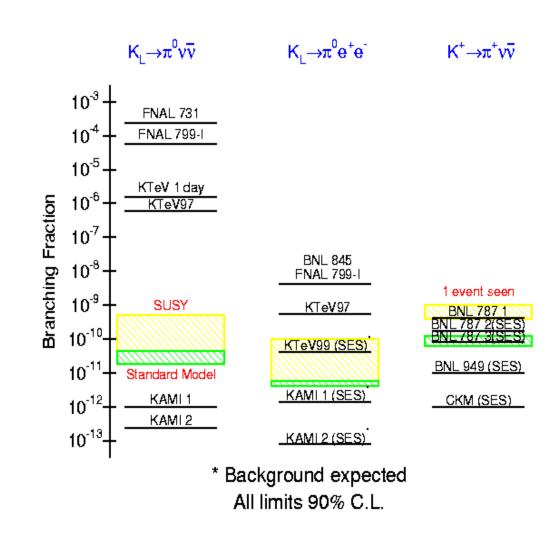
- Need to understand how new booster would fit into the program
 - What are the realizable intensities for the booster, MI, pbar, Tevatron?
 - With these intensity capabilities, what is the possible/best/optimized physics program.

Bottom line is always physics:

How will a Brighter Booster improve the Fermilab physics program over the next decade?

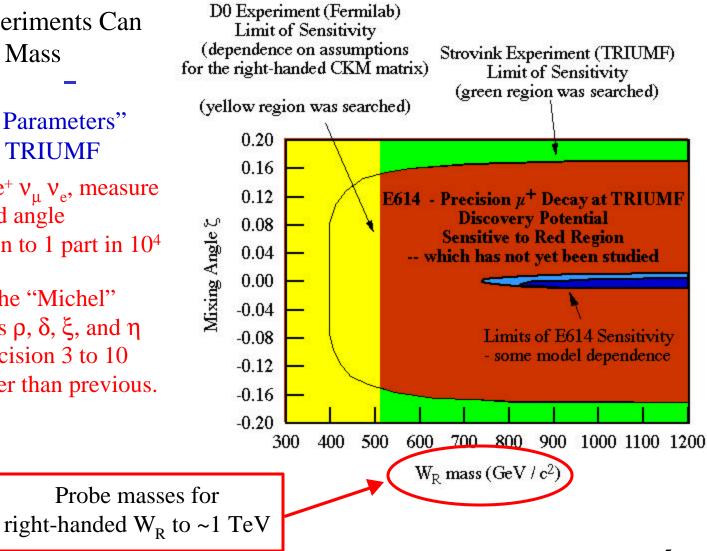
Physics Potential of a Brighter Booster

- What does the "Brighter Booster" offer?
 - Factor of 3 to 4 higher Main Injector intensity
 - Can run both fixed-target 120 and NuMI/Minos programs \Rightarrow Need > 6×10¹³ protons per cycle
 - NuMI and BooNE could run with much higher intensity
 - Higher intensity will allow collider pbar production to be less sensitive to fixed-target 120 and neutrino running
 - Currently, NuMI 25% luminosity reduction Future, fixed-target 120 would give a 50% luminosity reduction
 - Higher intensity MI pulses on the pbar target would give increased pbar production and with a new accumulator, higher collider luminosity.
 - Could increase CDF/D0 luminosity by \times 2 to \times 4 \Rightarrow But when?
 - Question: What limits the luminosity if booster intensity increased
 - "Brighter Booster" could be the front-end for a low-energy, high intensity muon /pion facility
 - Low energy pion and muon beams for experimentation
 - Muon cooling experiments moving towards a first muon storage ring


Upgraded Neutrino Oscillation Program

- Higher intensity for BooNE and Minos
 - Minos may be able to measure $v_{\mu} \rightarrow v_e$ and $\sin^2 2\theta_{13}$
- Possible v_{τ} appearance experiments
 - Short (20km) baseline experiment if MiniBooNE sees a signal
 - Emulsion-type experiment in Soudan becomes much more feasible
- Very long baseline experiment from Fermilab to SLAC/LBNL
 - Sensitivity to $\sin^2 2\theta_{13}$ through $v_{\mu} \rightarrow v_e$
 - Probably systematics limited at about the 0.01 level
 - Is it possible to detect matter effects?
 - Measure the sign of $\Delta m_{23}^2 \implies \text{Is } m_3^2 \text{ bigger than } m_2^3$?

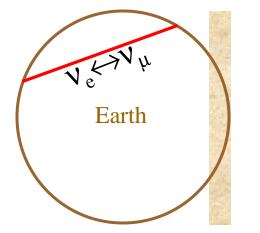
MI Fixed Target 120 GeV Program


- Kaon Program:
 - KAMI $K_L \rightarrow \pi^0 \nu \, \overline{\nu}$
 - $\begin{array}{ccc} & CKM \\ & K^+ {\longrightarrow} \pi^+ \nu \ \overline{\nu} \end{array}$
- Other fixed-target experiments probing nucleon structure and particle production

Intensity will be at a premium with current MI intensity

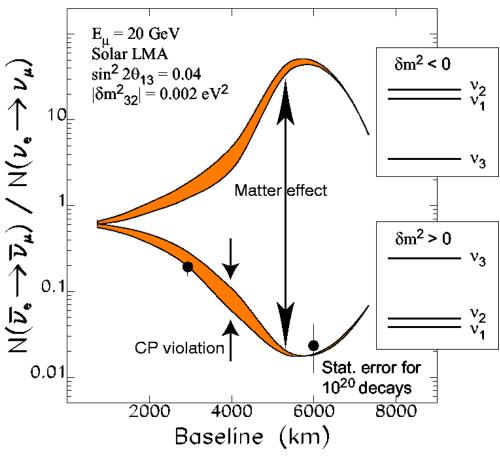
Low Energy Pion/Muon Facility

- Low Energy Experiments Can Also Probe High Mass
 - For example: New "Michel Parameters" experiment at TRIUMF
 - For $\mu^+ \rightarrow e^+ \nu_{\mu} \nu_{e}$, measure energy and angle distribution to 1 part in 10⁴
 - ⇒Measure the "Michel" parameters ρ , δ , ξ , and η with a precision 3 to 10 times better than previous.

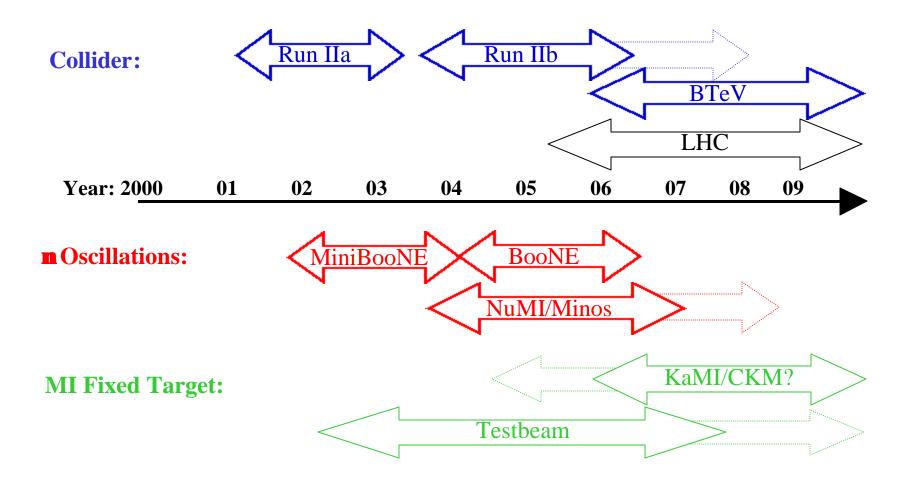


Some Topics for Brighter Booster Physics Study

- Neutrino oscillations
 - Investigate the capabilities using the higher intensity available with a new booster for:
 - 1) An upgraded NuMI/Minos experiment with 3-4 times the intensity and an upgraded detector
 - 2) A neutrino oscillation experiment with a ~3000 km baseline
 - 3) Tau neutrino appearance experiments for atmospheric and LSND Δm^2 values
- Non-oscillation neutrino physics: A dependence, structure functions, polarization.....
- MI Fixed Target program
 - Investigate the measurement improvements that would be available with increased beam intensity
 - ⇒ What would be the ideal/required intensity for a given measurement?
- Low energy muon/pion facility
 - Investigate the physics potential of a high intensity low energy beam facility
 - Investigate the potential for using this facility for ν-factory cooling R&D
- Collider experiments
 - What is the highest luminosity that the detectors can use?
 - Are there strategies to use higher luminosity for specific physics measurements?
- Other possible areas: neutrons, pbar, etc.

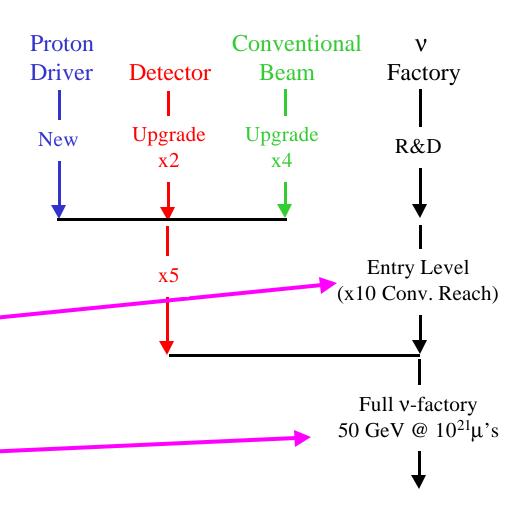

Matter (and CP) Effects for $v_e \leftrightarrow v_\mu$

- For long baseline experiments, matter effects change the oscillation formula:
 - $v_e e \rightarrow v_e e NC and CC$
 - $\quad \nu_{\mu} \: e \to \nu_{\mu} \: e \: NC \: only$



- Oscillation probability is modified depending on sign of $\Delta m^2 = m_3^2 m_2^2$
 - Measure sign of Δm_{32}^2 to determine if $m_3^2 > m_2^2$

Wrong-Sign Muon Measurements



Fermilab HEP Program

Neutrino Oscillation Scenarios

- Conventional v-beams can be used if $\sin^2 2\theta_{13} > \sim 0.01$?
 - Minos upgrade to x4 intensity and/or x2 in mass
 - Long baseline (3000 km) to measure matter effects (sign of Δm_{23}^2)?
- Need v-factory to push $\sin^2 2\theta_{13} < \sim 0.001$
 - Measure $\sin^2 2\theta_{13}$ and matter effects
- If LMA solution or MiniBooNE
 - CP violation measurements possible

